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Chapter 5 <27> 

• Numbers we can represent using binary 

representations

– Positive numbers

• Unsigned binary

– Negative numbers

• Two’s complement

• Sign/magnitude numbers

• What about fractions?

Number Systems
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• Two common notations:

– Fixed-point: binary point fixed

– Floating-point: binary point floats to the right of the 

most significant 1

Numbers with Fractions
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01101100

0110.1100

22 + 21 + 2-1 + 2-2 = 6.75

• 6.75 using 4 integer bits and 4 fraction bits:

• Binary point is implied

• The number of integer and fraction bits must be 

agreed upon beforehand

Fixed-Point Numbers
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• Represent 7.510 using 4 integer bits and 4 

fraction bits.

Fixed-Point Number Example
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• Represent 7.510 using 4 integer bits and 4 

fraction bits.

01111000

Fixed-Point Number Example
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• Representations:

– Sign/magnitude

– Two’s complement

• Example: Represent -7.510 using 4 integer and 4 fraction 

bits

– Sign/magnitude:

– Two’s complement:

Signed Fixed-Point Numbers
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• Representations:

– Sign/magnitude

– Two’s complement

• Example: Represent -7.510 using 4 integer and 4 fraction 

bits

– Sign/magnitude:

11111000

– Two’s complement:

1. +7.5: 01111000

2. Invert bits: 10000111

3. Add 1 to lsb: +           1

10001000

Signed Fixed-Point Numbers
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• Binary point floats to the right of the most significant 1

• Similar to decimal scientific notation

• For example, write 27310 in scientific notation:

273 = 2.73 × 102

• In general, a number is written in scientific notation as:

± M × BE

– M = mantissa

– B = base

– E = exponent

– In the example, M = 2.73, B = 10, and E = 2

Floating-Point Numbers
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Sign Exponent Mantissa

1 bit 8 bits 23 bits

• Example: represent the value 22810 using a 32-bit floating 

point representation

We show three versions –final version is called the IEEE 754 

floating-point standard

Floating-Point Numbers
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0 00000111     11 1001 0000 0000 0000 0000

Sign Exponent Mantissa

1 bit 8 bits 23 bits

1. Convert decimal to binary (don’t reverse  steps 1 & 2!):

22810 = 111001002

2. Write the number in “binary scientific notation”:

111001002 = 1.110012 × 27

3. Fill in each field of the 32-bit floating point number:

– The sign bit is positive (0)

– The 8 exponent bits represent the value 7

– The remaining 23 bits are the mantissa

Floating-Point Representation 1
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0 00000111     110 0100 0000 0000 0000 0000

Sign Exponent Fraction

1 bit 8 bits 23 bits

• First bit of the mantissa is always 1:

– 22810 = 111001002 = 1.11001 × 27

• So, no need to store it: implicit leading 1

• Store just fraction bits in 23-bit field

Floating-Point Representation 2
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0 10000110

Sign Biased

Exponent
Fraction

1 bit 8 bits 23 bits

    110 0100 0000 0000 0000 0000

• Biased exponent: bias = 127 (011111112)

– Biased exponent = bias + exponent

– Exponent of 7 is stored as:

127 + 7 = 134 = 0x100001102

• The IEEE 754 32-bit floating-point representation of 22810

in hexadecimal: 0x43640000

Floating-Point Representation 3

Positive and Negative exponents.
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1 100 0010 0     110 1001 0000 0000 0000 0000

Sign Exponent Fraction

1 bit 8 bits 23 bits

Write -58.2510 in floating point (IEEE 754)

1. Convert decimal to binary:

58.2510 = 111010.012

2. Write in binary scientific notation:

1.1101001 × 25

3. Fill in fields:
Sign bit: 1 (negative)

8 exponent bits: (127 + 5) = 132 = 100001002

23 fraction bits: 110 1001 0000 0000 0000 0000

in hexadecimal: 0xC2690000

Floating-Point Example
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Number Sign Exponent Fraction

0 X 00000000 00000000000000000000000

∞ 0 11111111 00000000000000000000000

- ∞ 1 11111111 00000000000000000000000

NaN X 11111111 non-zero

Floating-Point: Special Cases
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• Single-Precision:

– 32-bit

– 1 sign bit, 8 exponent bits, 23 fraction bits

– bias = 127

• Double-Precision:

– 64-bit

– 1 sign bit, 11 exponent bits, 52 fraction bits

– bias = 1023

Floating-Point Precision
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• Overflow: number too large to be represented

• Underflow: number too small to be represented

• Rounding modes:

– Down

– Up

– Toward zero

– To nearest

• Example: round 1.100101 (1.578125)  to only 3 fraction bits

– Down: 1.100

– Up: 1.101

– Toward zero: 1.100

– To nearest: 1.101 (1.625 is closer to 1.578125 than 1.5 is)

Floating-Point: Rounding
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1. Extract exponent and fraction bits

2. Prepend leading 1 to form mantissa

3. Compare exponents

4. Shift smaller mantissa if necessary

5. Add mantissas

6. Normalize mantissa and adjust exponent if necessary

7. Round result

8. Assemble exponent and fraction back into floating-point 

format

Floating-Point Addition
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Add the following floating-point numbers:

0x3FC00000

0x40500000

Floating-Point Addition Example
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0 01111111     100 0000 0000 0000 0000 0000

Sign Exponent Fraction

1 bit 8 bits 23 bits

0 10000000     101 0000 0000 0000 0000 0000

1 bit 8 bits 23 bits

Sign Exponent Fraction

1. Extract exponent and fraction bits

For first number (N1): S = 0, E = 127, F = .1

For second number (N2): S = 0, E = 128, F = .101

2. Prepend leading 1 to form mantissa

N1: 1.1

N2: 1.101

Floating-Point Addition Example



Chapter 5 <46> 

3. Compare exponents

127 – 128 = -1, so shift N1 right by 1 bit

4. Shift smaller mantissa if necessary

shift N1’s mantissa: 1.1 >> 1 = 0.11  (× 21)

5. Add mantissas

0.11   × 21

+ 1.101 × 21

10.011 × 21

Floating-Point Addition Example
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0 10000001     001 1000 0000 0000 0000 0000

Sign Exponent Fraction

1 bit 8 bits 23 bits

6. Normalize mantissa and adjust exponent if necessary

10.011 × 21 = 1.0011 × 22

7. Round result

No need (fits in 23 bits)

8. Assemble exponent and fraction back into floating-point 

format

S = 0, E = 2 + 127 = 129 = 100000012, F = 001100..

in hexadecimal: 0x40980000

Floating Point Addition Example
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Q
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Reset
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CLK

Reset

N
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Q
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Symbol Implementation

• Increments on each clock edge

• Used to cycle through numbers. For example, 

– 000, 001, 010, 011, 100, 101, 110, 111, 000, 001…

• Example uses:

– Digital clock displays

– Program counter: keeps track of current instruction executing

Counters
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N
Q

S
in

S
out

CLK

S
in

S
out

Q
0

Q
1

Q
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Q
2

Implementation:

• Shift a new bit in on each clock edge

• Shift a bit out on each clock edge

• Serial-to-parallel converter: converts serial input (Sin) to 

parallel output (Q0:N-1)

Shift Registers

Symbol:
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Clk
0

1

0

1

0

1

0
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Q
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S
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Load

• When Load = 1, acts as a normal N-bit register

• When Load = 0, acts as a shift register

• Now can act as a serial-to-parallel converter (Sin to Q0:N-1) or 

a parallel-to-serial converter (D0:N-1 to Sout)

Shift Register with Parallel Load
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Address

Data

Array
N

M

• Efficiently store large amounts of data

• 3 common types:

– Dynamic random access memory (DRAM)

– Static random access memory (SRAM)

– Read only memory (ROM)

• M-bit data value read/ written at each unique N-bit address

Memory Arrays
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Address

Data

Array
N

M

Address Data

11

10

01

00

depth

0 1 0

1 0 0

1 1 0

0 1 1

width

Address

Data

Array2

3

• 2-dimensional array of bit cells 

• Each bit cell stores one bit

• N address bits and M data bits:

– 2N rows and M columns

– Depth: number of rows (number of words)

– Width: number of columns (size of word)

– Array size: depth × width = 2N × M

Memory Arrays
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Address Data

11

10

01

00

depth

0 1 0

1 0 0

1 1 0

0 1 1

width

Address

Data

Array2

3

• 22 × 3-bit array

• Number of words: 4

• Word size: 3-bits

• For example, the 3-bit word stored at address 10 is 100

Memory Array Example
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Address

Data

1024-word x

32-bit

Array

10

32

Memory Arrays
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stored 

bit

wordline

bitline

stored 

bit = 0

wordline = 1

stored 

bit = 1

stored 

bit = 0

stored 

bit = 1

bitline =

(a) (b)

wordline = 1

wordline = 0

wordline = 0

bitline = 

bitline =

bitline = 0

1

Z

Z

Memory Array Bit Cells
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wordline
311

10

2:4

Decoder

Address

01

00

stored

bit = 0
wordline

2

wordline
1

wordline
0

stored

bit = 1

stored

bit = 0

stored

bit = 1

stored

bit = 0

stored

bit = 0

stored

bit = 1

stored

bit = 1

stored

bit = 0

stored

bit = 0

stored

bit = 1

stored

bit = 1

bitline
2

bitline
1

bitline
0

Data
2

Data
1

Data
0

2

• Wordline: 
– like an enable

– single row in memory array read/written

– corresponds to unique address

– only one wordline HIGH at once

Memory Array
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• Random access memory (RAM): volatile

• Read only memory (ROM): nonvolatile

Types of Memory



Chapter 5 <58> 

• Volatile: loses its data when power off

• Read and written quickly

• Main memory in your computer is RAM 

(DRAM)

Historically called random access memory because any data 

word accessed as easily as any other (in contrast to sequential 

access memories such as a tape recorder)

RAM: Random Access Memory
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• Nonvolatile: retains data when power off

• Read quickly, but writing is impossible or 

slow

• Flash memory in cameras, thumb drives, and 

digital cameras are all ROMs

Historically called read only memory because ROMs 

were written at manufacturing time or by burning fuses. 

Once ROM was configured, it could not be written again. 

This is no longer the case for Flash memory and other 

types of ROMs.

ROM: Read Only Memory
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• DRAM (Dynamic random access memory)

• SRAM (Static random access memory)

• Differ in how they store data:

– DRAM uses a capacitor

– SRAM uses cross-coupled inverters

Types of RAM
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• Invented DRAM in 

1966 at IBM

• Others were skeptical 

that the idea would 

work

• By the mid-1970’s 

DRAM in virtually all 

computers

Robert Dennard, 1932 -
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stored 

bit

wordline

bitline

wordline

bitline

stored

bit

• Data bits stored on capacitor

• Dynamic because the value needs to be refreshed 

(rewritten) periodically and after read:

– Charge leakage from the capacitor degrades the value

– Reading destroys the stored value

DRAM
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wordline

bitline

wordline

bitline

+ +stored

bit = 1

stored

bit = 0

DRAM
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stored 

bit

wordline

bitline

wordline

bitline bitline

SRAM
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wordline
311

10

2:4

Decoder

Address

01

00

stored

bit = 0
wordline

2

wordline
1

wordline
0

stored

bit = 1

stored

bit = 0

stored

bit = 1

stored

bit = 0

stored

bit = 0

stored

bit = 1

stored

bit = 1

stored

bit = 0

stored

bit = 0

stored

bit = 1

stored

bit = 1

bitline
2

bitline
1

bitline
0

Data
2

Data
1

Data
0

2

wordline

bitline bitline

wordline

bitline

DRAM bit cell: SRAM bit cell:

Memory Arrays Review
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11

10

2:4 

Decoder

Address

Data0Data1Data2

01

00

2

wordline

bitline

wordline

bitline

bit cell

containing 0

bit cell

containing 1

ROM: Dot Notation
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• Developed memories and high 
speed circuits at Toshiba, 1971-1994 

• Invented Flash memory as an 
unauthorized project pursued during 
nights and weekends in the late 
1970’s

• The process of erasing the memory 
reminded him of the flash of a 
camera 

• Toshiba slow to commercialize the 
idea; Intel was first to market in 
1988 

• Flash has grown into a $25 billion 
per year market

Fujio Masuoka, 1944 -
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11

10

2:4 

Decoder

Address

Data0Data1Data2

01

00

2

Address Data

11

10

01

00

depth

0 1 0

1 0 0

1 1 0

0 1 1

width

ROM Storage
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11

10

2:4 

Decoder

Address

Data0Data1Data2

01

00

2 Data2 = A1  A0

Data1 = A1 + A0

Data0 = A1A0

ROM Logic
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11

10

2:4

Decoder

A, B

ZYX

01

00

2

Implement the following logic functions using a 22 × 3-bit 

ROM:

– X = AB

– Y = A + B

– Z = A B

Example: Logic with ROMs
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wordline
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2:4
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Data2 = A1  A0

Data1 = A1 + A0

Data0 = A1A0

Logic with Any Memory Array
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wordline
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2:4

Decoder

A, B
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wordline

2

wordline
1

wordline
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Implement the following logic functions using a 22 × 3-bit 

memory array:

– X = AB

– Y = A + B

– Z = A B

Logic with Memory Arrays
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stored

bit = 1

stored

bit = 0

00

01

2:4

Decoder

A

stored

bit = 0

bitline

stored

bit = 0

Y

B

10

11

4-word x 1-bit Array

A B Y

0 0

0 1

1 0

1 1

0

0

0

1

Truth

Table

A
1

A
0

Called lookup tables (LUTs): look up output at each input 

combination (address)

Logic with Memory Arrays
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A1

A3

WD3

WE3

A2

CLK

Array

RD2

RD1
M

M

N

N

N

M

• Port: address/data pair

• 3-ported memory

– 2 read ports (A1/RD1, A2/RD2)

– 1 write port (A3/WD3, WE3 enables writing)

• Register file: small multi-ported memory

Multi-ported Memories


