
CS222: Computer Architecture

Instructors:
Dr Ahmed Shalaby http://bu.edu.eg/staff/ahmedshalaby14#

الاخلاق-الادب -الاحترام
الدكتور-المعيد -الطالب

http://bu.edu.eg/staff/ahmedshalaby14

Chapter 5 <27>

• Numbers we can represent using binary

representations

– Positive numbers

• Unsigned binary

– Negative numbers

• Two’s complement

• Sign/magnitude numbers

• What about fractions?

Number Systems

Chapter 5 <28>

• Two common notations:

– Fixed-point: binary point fixed

– Floating-point: binary point floats to the right of the

most significant 1

Numbers with Fractions

Chapter 5 <29>

01101100

0110.1100

22 + 21 + 2-1 + 2-2 = 6.75

• 6.75 using 4 integer bits and 4 fraction bits:

• Binary point is implied

• The number of integer and fraction bits must be

agreed upon beforehand

Fixed-Point Numbers

Chapter 5 <30>

• Represent 7.510 using 4 integer bits and 4

fraction bits.

Fixed-Point Number Example

Chapter 5 <31>

• Represent 7.510 using 4 integer bits and 4

fraction bits.

01111000

Fixed-Point Number Example

Chapter 5 <32>

• Representations:

– Sign/magnitude

– Two’s complement

• Example: Represent -7.510 using 4 integer and 4 fraction

bits

– Sign/magnitude:

– Two’s complement:

Signed Fixed-Point Numbers

Chapter 5 <33>

• Representations:

– Sign/magnitude

– Two’s complement

• Example: Represent -7.510 using 4 integer and 4 fraction

bits

– Sign/magnitude:

11111000

– Two’s complement:

1. +7.5: 01111000

2. Invert bits: 10000111

3. Add 1 to lsb: + 1

10001000

Signed Fixed-Point Numbers

Chapter 5 <34>

• Binary point floats to the right of the most significant 1

• Similar to decimal scientific notation

• For example, write 27310 in scientific notation:

273 = 2.73 × 102

• In general, a number is written in scientific notation as:

± M × BE

– M = mantissa

– B = base

– E = exponent

– In the example, M = 2.73, B = 10, and E = 2

Floating-Point Numbers

Chapter 5 <35>

Sign Exponent Mantissa

1 bit 8 bits 23 bits

• Example: represent the value 22810 using a 32-bit floating

point representation

We show three versions –final version is called the IEEE 754

floating-point standard

Floating-Point Numbers

Chapter 5 <36>

0 00000111 11 1001 0000 0000 0000 0000

Sign Exponent Mantissa

1 bit 8 bits 23 bits

1. Convert decimal to binary (don’t reverse steps 1 & 2!):

22810 = 111001002

2. Write the number in “binary scientific notation”:

111001002 = 1.110012 × 27

3. Fill in each field of the 32-bit floating point number:

– The sign bit is positive (0)

– The 8 exponent bits represent the value 7

– The remaining 23 bits are the mantissa

Floating-Point Representation 1

Chapter 5 <37>

0 00000111 110 0100 0000 0000 0000 0000

Sign Exponent Fraction

1 bit 8 bits 23 bits

• First bit of the mantissa is always 1:

– 22810 = 111001002 = 1.11001 × 27

• So, no need to store it: implicit leading 1

• Store just fraction bits in 23-bit field

Floating-Point Representation 2

Chapter 5 <38>

0 10000110

Sign Biased

Exponent
Fraction

1 bit 8 bits 23 bits

 110 0100 0000 0000 0000 0000

• Biased exponent: bias = 127 (011111112)

– Biased exponent = bias + exponent

– Exponent of 7 is stored as:

127 + 7 = 134 = 0x100001102

• The IEEE 754 32-bit floating-point representation of 22810

in hexadecimal: 0x43640000

Floating-Point Representation 3

Positive and Negative exponents.

Chapter 5 <39>

1 100 0010 0 110 1001 0000 0000 0000 0000

Sign Exponent Fraction

1 bit 8 bits 23 bits

Write -58.2510 in floating point (IEEE 754)

1. Convert decimal to binary:

58.2510 = 111010.012

2. Write in binary scientific notation:

1.1101001 × 25

3. Fill in fields:
Sign bit: 1 (negative)

8 exponent bits: (127 + 5) = 132 = 100001002

23 fraction bits: 110 1001 0000 0000 0000 0000

in hexadecimal: 0xC2690000

Floating-Point Example

Chapter 5 <40>

Number Sign Exponent Fraction

0 X 00000000 00000000000000000000000

∞ 0 11111111 00000000000000000000000

- ∞ 1 11111111 00000000000000000000000

NaN X 11111111 non-zero

Floating-Point: Special Cases

Chapter 5 <41>

• Single-Precision:

– 32-bit

– 1 sign bit, 8 exponent bits, 23 fraction bits

– bias = 127

• Double-Precision:

– 64-bit

– 1 sign bit, 11 exponent bits, 52 fraction bits

– bias = 1023

Floating-Point Precision

Chapter 5 <42>

• Overflow: number too large to be represented

• Underflow: number too small to be represented

• Rounding modes:

– Down

– Up

– Toward zero

– To nearest

• Example: round 1.100101 (1.578125) to only 3 fraction bits

– Down: 1.100

– Up: 1.101

– Toward zero: 1.100

– To nearest: 1.101 (1.625 is closer to 1.578125 than 1.5 is)

Floating-Point: Rounding

Chapter 5 <43>

1. Extract exponent and fraction bits

2. Prepend leading 1 to form mantissa

3. Compare exponents

4. Shift smaller mantissa if necessary

5. Add mantissas

6. Normalize mantissa and adjust exponent if necessary

7. Round result

8. Assemble exponent and fraction back into floating-point

format

Floating-Point Addition

Chapter 5 <44>

Add the following floating-point numbers:

0x3FC00000

0x40500000

Floating-Point Addition Example

Chapter 5 <45>

0 01111111 100 0000 0000 0000 0000 0000

Sign Exponent Fraction

1 bit 8 bits 23 bits

0 10000000 101 0000 0000 0000 0000 0000

1 bit 8 bits 23 bits

Sign Exponent Fraction

1. Extract exponent and fraction bits

For first number (N1): S = 0, E = 127, F = .1

For second number (N2): S = 0, E = 128, F = .101

2. Prepend leading 1 to form mantissa

N1: 1.1

N2: 1.101

Floating-Point Addition Example

Chapter 5 <46>

3. Compare exponents

127 – 128 = -1, so shift N1 right by 1 bit

4. Shift smaller mantissa if necessary

shift N1’s mantissa: 1.1 >> 1 = 0.11 (× 21)

5. Add mantissas

0.11 × 21

+ 1.101 × 21

10.011 × 21

Floating-Point Addition Example

Chapter 5 <47>

0 10000001 001 1000 0000 0000 0000 0000

Sign Exponent Fraction

1 bit 8 bits 23 bits

6. Normalize mantissa and adjust exponent if necessary

10.011 × 21 = 1.0011 × 22

7. Round result

No need (fits in 23 bits)

8. Assemble exponent and fraction back into floating-point

format

S = 0, E = 2 + 127 = 129 = 100000012, F = 001100..

in hexadecimal: 0x40980000

Floating Point Addition Example

Chapter 5 <48>

Q

CLK

Reset

N

+
N

1

CLK

Reset

N

N

Q
N

r

Symbol Implementation

• Increments on each clock edge

• Used to cycle through numbers. For example,

– 000, 001, 010, 011, 100, 101, 110, 111, 000, 001…

• Example uses:

– Digital clock displays

– Program counter: keeps track of current instruction executing

Counters

Chapter 5 <49>

N
Q

S
in

S
out

CLK

S
in

S
out

Q
0

Q
1

Q
N-1

Q
2

Implementation:

• Shift a new bit in on each clock edge

• Shift a bit out on each clock edge

• Serial-to-parallel converter: converts serial input (Sin) to

parallel output (Q0:N-1)

Shift Registers

Symbol:

Chapter 5 <50>

Clk
0

1

0

1

0

1

0

1

D
0

D
1

D
N-1

D
2

Q
0

Q
1

Q
N-1

Q
2

S
in

S
out

Load

• When Load = 1, acts as a normal N-bit register

• When Load = 0, acts as a shift register

• Now can act as a serial-to-parallel converter (Sin to Q0:N-1) or

a parallel-to-serial converter (D0:N-1 to Sout)

Shift Register with Parallel Load

Chapter 5 <51>

Address

Data

Array
N

M

• Efficiently store large amounts of data

• 3 common types:

– Dynamic random access memory (DRAM)

– Static random access memory (SRAM)

– Read only memory (ROM)

• M-bit data value read/ written at each unique N-bit address

Memory Arrays

Chapter 5 <52>

Address

Data

Array
N

M

Address Data

11

10

01

00

depth

0 1 0

1 0 0

1 1 0

0 1 1

width

Address

Data

Array2

3

• 2-dimensional array of bit cells

• Each bit cell stores one bit

• N address bits and M data bits:

– 2N rows and M columns

– Depth: number of rows (number of words)

– Width: number of columns (size of word)

– Array size: depth × width = 2N × M

Memory Arrays

Chapter 5 <53>

Address Data

11

10

01

00

depth

0 1 0

1 0 0

1 1 0

0 1 1

width

Address

Data

Array2

3

• 22 × 3-bit array

• Number of words: 4

• Word size: 3-bits

• For example, the 3-bit word stored at address 10 is 100

Memory Array Example

Chapter 5 <54>

Address

Data

1024-word x

32-bit

Array

10

32

Memory Arrays

Chapter 5 <55>

stored

bit

wordline

bitline

stored

bit = 0

wordline = 1

stored

bit = 1

stored

bit = 0

stored

bit = 1

bitline =

(a) (b)

wordline = 1

wordline = 0

wordline = 0

bitline =

bitline =

bitline = 0

1

Z

Z

Memory Array Bit Cells

Chapter 5 <56>

wordline
311

10

2:4

Decoder

Address

01

00

stored

bit = 0
wordline

2

wordline
1

wordline
0

stored

bit = 1

stored

bit = 0

stored

bit = 1

stored

bit = 0

stored

bit = 0

stored

bit = 1

stored

bit = 1

stored

bit = 0

stored

bit = 0

stored

bit = 1

stored

bit = 1

bitline
2

bitline
1

bitline
0

Data
2

Data
1

Data
0

2

• Wordline:
– like an enable

– single row in memory array read/written

– corresponds to unique address

– only one wordline HIGH at once

Memory Array

Chapter 5 <57>

• Random access memory (RAM): volatile

• Read only memory (ROM): nonvolatile

Types of Memory

Chapter 5 <58>

• Volatile: loses its data when power off

• Read and written quickly

• Main memory in your computer is RAM

(DRAM)

Historically called random access memory because any data

word accessed as easily as any other (in contrast to sequential

access memories such as a tape recorder)

RAM: Random Access Memory

Chapter 5 <59>

• Nonvolatile: retains data when power off

• Read quickly, but writing is impossible or

slow

• Flash memory in cameras, thumb drives, and

digital cameras are all ROMs

Historically called read only memory because ROMs

were written at manufacturing time or by burning fuses.

Once ROM was configured, it could not be written again.

This is no longer the case for Flash memory and other

types of ROMs.

ROM: Read Only Memory

Chapter 5 <60>

• DRAM (Dynamic random access memory)

• SRAM (Static random access memory)

• Differ in how they store data:

– DRAM uses a capacitor

– SRAM uses cross-coupled inverters

Types of RAM

Chapter 5 <61>

• Invented DRAM in

1966 at IBM

• Others were skeptical

that the idea would

work

• By the mid-1970’s

DRAM in virtually all

computers

Robert Dennard, 1932 -

Chapter 5 <62>

stored

bit

wordline

bitline

wordline

bitline

stored

bit

• Data bits stored on capacitor

• Dynamic because the value needs to be refreshed

(rewritten) periodically and after read:

– Charge leakage from the capacitor degrades the value

– Reading destroys the stored value

DRAM

Chapter 5 <63>

wordline

bitline

wordline

bitline

+ +stored

bit = 1

stored

bit = 0

DRAM

Chapter 5 <64>

stored

bit

wordline

bitline

wordline

bitline bitline

SRAM

Chapter 5 <65>

wordline
311

10

2:4

Decoder

Address

01

00

stored

bit = 0
wordline

2

wordline
1

wordline
0

stored

bit = 1

stored

bit = 0

stored

bit = 1

stored

bit = 0

stored

bit = 0

stored

bit = 1

stored

bit = 1

stored

bit = 0

stored

bit = 0

stored

bit = 1

stored

bit = 1

bitline
2

bitline
1

bitline
0

Data
2

Data
1

Data
0

2

wordline

bitline bitline

wordline

bitline

DRAM bit cell: SRAM bit cell:

Memory Arrays Review

Chapter 5 <66>

11

10

2:4

Decoder

Address

Data0Data1Data2

01

00

2

wordline

bitline

wordline

bitline

bit cell

containing 0

bit cell

containing 1

ROM: Dot Notation

Chapter 5 <67>

• Developed memories and high
speed circuits at Toshiba, 1971-1994

• Invented Flash memory as an
unauthorized project pursued during
nights and weekends in the late
1970’s

• The process of erasing the memory
reminded him of the flash of a
camera

• Toshiba slow to commercialize the
idea; Intel was first to market in
1988

• Flash has grown into a $25 billion
per year market

Fujio Masuoka, 1944 -

Chapter 5 <68>

11

10

2:4

Decoder

Address

Data0Data1Data2

01

00

2

Address Data

11

10

01

00

depth

0 1 0

1 0 0

1 1 0

0 1 1

width

ROM Storage

Chapter 5 <69>

11

10

2:4

Decoder

Address

Data0Data1Data2

01

00

2 Data2 = A1  A0

Data1 = A1 + A0

Data0 = A1A0

ROM Logic

Chapter 5 <70>

11

10

2:4

Decoder

A, B

ZYX

01

00

2

Implement the following logic functions using a 22 × 3-bit

ROM:

– X = AB

– Y = A + B

– Z = A B

Example: Logic with ROMs

Chapter 5 <71>

wordline
311

10

2:4

Decoder

Address

01

00

stored

bit = 0
wordline

2

wordline
1

wordline
0

stored

bit = 1

stored

bit = 0

stored

bit = 1

stored

bit = 0

stored

bit = 0

stored

bit = 1

stored

bit = 1

stored

bit = 0

stored

bit = 0

stored

bit = 1

stored

bit = 1

bitline
2

bitline
1

bitline
0

Data
2

Data
1

Data
0

2

Data2 = A1  A0

Data1 = A1 + A0

Data0 = A1A0

Logic with Any Memory Array

Chapter 5 <72>

wordline
311

10

2:4

Decoder

A, B

01

00

stored

bit = 1
wordline

2

wordline
1

wordline
0

stored

bit = 1

stored

bit = 0

stored

bit = 0

stored

bit = 1

stored

bit = 1

stored

bit = 0

stored

bit = 1

stored

bit = 0

stored

bit = 0

stored

bit = 0

stored

bit = 0

bitline
2

bitline
1

bitline
0

X Y Z

2

Implement the following logic functions using a 22 × 3-bit

memory array:

– X = AB

– Y = A + B

– Z = A B

Logic with Memory Arrays

Chapter 5 <73>

stored

bit = 1

stored

bit = 0

00

01

2:4

Decoder

A

stored

bit = 0

bitline

stored

bit = 0

Y

B

10

11

4-word x 1-bit Array

A B Y

0 0

0 1

1 0

1 1

0

0

0

1

Truth

Table

A
1

A
0

Called lookup tables (LUTs): look up output at each input

combination (address)

Logic with Memory Arrays

Chapter 5 <74>

A1

A3

WD3

WE3

A2

CLK

Array

RD2

RD1
M

M

N

N

N

M

• Port: address/data pair

• 3-ported memory

– 2 read ports (A1/RD1, A2/RD2)

– 1 write port (A3/WD3, WE3 enables writing)

• Register file: small multi-ported memory

Multi-ported Memories

